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Post-Stratification: A Modeler’s Perspective

R. J. A. LITTLE*

Post-stratification 1s a common technique 1n survey analysis for incorporating population distributions of vanables into survey
estimates The basic technique divides the sample into post-strata, and computes a post-stratification weight w, = rP,/r, for each
sample case 1n post-stratum £, where r, 1s the number of survey respondents 1 post-stratum #, P, 1s the population proportion from
a census, and r 1s the respondent sample size Survey estimates, such as functions of means and totals, then weight cases by w;,.
Vanants and extensions of the method include truncation of the weights to avoid excessive variabihity and raking to a set of two or
more univanate marginal distnbutions Literature on post-stratification 1s imited and has mainly taken the randomization (or design-
based) perspective, where inference 1s based on the sampling distribution with population values held fixed. This article develops
Bavesian model-based theory for the method A basic normal post-stratification model 1s introduced which yields the post-stratified
mean as the posterior mean, and a postertor vanance that incorporates adjustments for esimating vanances Modifications are then
proposed for small sample inference, based on (a) changing the Jeffreys prior for the post-stratum parameters to borrow strength
across post-strata, and (b) ignoring partial information about the post-strata In particular, practical rules for collapsing post-strata to
reduce posterior vanance are developed and compared with frequentist approaches Methods for two post-stratifying variables are
also considered Raking sample counts and respondent counts 15 shown to provide approximate Bayesian inferences when the margins
of the two post-stratifiers are available but their joint distnbution 1s not When the joint distribution 1s available, raking effectively
1gnores the information 1t contains, and hence can be compared with other tcchniques that 1ignore information such as collapsing
For inference about means, 1t 1s suggested that raking 1s most appropnate when post-stratum means have an additive or near-additive

structure, whereas collapsing 1s indicated when interactions are present
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1. INTRODUCTION

Probability sampling 1s one of the major contributions of
statistics to science; however, many dishike the lack of control
inherent in simple random sampling Stratified sampling
maintains the probability nature of the sample while con-
trolling 1ts composition with respect to important charac-
teristics. Much has been written about the method since
Neyman’s (1934) landmark paper.

Stratified sampling is limited to variables that are known
for survey umts prior to data collection. Post-stratification
combines data collected in the survey with aggregate data
on the population from other sources For example, a de-
mographic survey generally cannot stratify on age, because
the ages of individuals are not available until the interview
is conducted. But the population age distribution may be
available 1n aggregate form, from census data. Post-
stratification (in its basic form) classifies the sample by age
group and then weights individuals 1n each group, or post-
stratum, up to the population total in that group. Specifically,
the weight w;, = r P,/ r; 1s computed for each sample case in
post-stratum #, where r, 1s the number of respondents in
post-stratum /4, P, 1s the population proportion from a cen-
sus, and r 1s the respondent sample size; weights are scaled
so that they sum to the respondent sample size. (Post-
stratification has a different meaning 1n clinical trials, where
1t refers to stratified analysis of data from unstratified ran-
domized designs; this articie concerns the survey technique
only.)
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Post-stratification can improve the accuracy of survey es-
timates, both by reducing bias and by increasing precision.
In the preceding example, the mean age of the population
might be estimated by the sample mean, given an equal
probability sample But the mean age weighted by the { wy, }
18 much more precise, because 1t essentially reproduces the
population mean aside from effects of grouping. Further-
more, if the unweighted mean is biased by differential non-
response by age, then the post-stratified mean corrects for
this bias. These properties are of academic interest given the
availability of data on age from the census, but they also
apply in diuted form to other survey variables that are cor-
related with age.

Post-stratification is very common in practice, playing an
important role in many government surveys (see, for ex-
ample, Hanson 1978, Harte 1982; Waterton and Lievesley
1987). In a seminal paper, however, Holt and Smith (1979)
noted that its statistical properties have received relatively
little attention. The literature by and large studies the method
from the randomization perspective, where the bias and
mean squared error of estimators are assessed over the sam-
pling disiribution, with population values treated as fixed.
Post-stratification 1s considered here from the predictive
modeling perspective, where population values are treated
as random vanables under a model and inference about finite
population quantities is based on their predictive distribution
under the model. | apply the Bayesian version of the mod-
eling approach, where unknown parameters in the model
are assigned prior distributions, rather than the superpopu-
lation model formulation, where such parameters are treated
as fixed With noninformative priors, these approaches often
vield equivalent or very similar answers.
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From the randomization perspective 1t 1s natural to view
post-stratification as a method of weighting adjustment,
which is the form 1n which the method typically appears to
the survey analyst. A weight is attached to each sample unit,
that is proportional to the number of population units the
unit “represents” (Fig. 1a). From a predictive modeling per-
spective, the data are more accurately depicted as in Figure
1b, where the post-stratifier Z is known for all N units in the
population and the survey variables are measured only for
the n sampled units. Analysis effectively fills in the missing
data in the full rectangular array. Figure 1a has a convenient
rectangular form for analysis, but Figure 1b is the basic form
of the data.

Section 2 discusses post-stratification on a single categor-
ical margin, the basic version of the method. Bayesian anal-
yses are considered when a simple random sample of the
population is selected and the role of post-stratification 1s to
reduce variance and when selection is biased by nonresponse
or frame errors, where post-stratification also has a role 1n
reducing bias. Methods for collapsing small cells are provided
in the two cases, and other approaches to the small-cell prob-
lem are outlined. A Bayesian perspective is provided for the
intriguing issues of conditioning that arise under random-
1zation inference.

Section 3 considers methods of post-stratification to mar-
gins from two or more variables. The method of raking 1s
commonly used in such situations; Bayesian justifications
of raking sample counts and respondent counts are presented,
and the added posterior variance from raking is discussed.
When the joint population counts are known, raking can be
viewed as ignoring information to deal with the problem of
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Figure 1 Weighted Data from a Post-Stratihed Survey (a) and Post-
stratification as a Predrction Problem (b)
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sparse cells and as such can be compared with alternative
methods, such as collapsing. Section 4 suggests some topics
for future research.

2. POST-STRATIFICATION TO A SINGLE MARGIN

2.1 The Post-Stratified Mean

Let Z denote the post-stratifying vanable, let Y denote a
survey variable, and consider inference for the finite popu-
lation mean Y = X, P,Y,, where Y, 1s the mean in post-
stratum /4. Suppose that a simple random sample of size n
1s selected, r of which respond to the survey; additional com-
plexities from clustering and stratification of the sample de-
sign are not considered here. Let #;, and r;, < 5, denote the
number sampled and the number responding in post-stratum
h. Write P = {Pl,. . ..P”},n= {n,,. . ,nH}.andr: {rl,

-+ ¥u}. Then P and r are assumed known. The sample
counts n may or may not be known, depending on whether
Z is known for sample nonrespondents. For example, 1f Z
denotes age group and if nonrespondents are individuals who
refused to participate, then their ages may be available from
a household listing, in which case n 1s known. On the other
hand, if nonrespondents are from noncontacted households,
then their ages may not be known, and hence n 1s also un-
known. Frame undercoverage can be included by treating
as nonrespondents cases excluded from the frame who should
have been sampled. In that case n is also unknown. We shall
see that for a single post-stratifier, the question of whether
{n} is known or not 1s irrelevant, because 1t plays no role
in inference. In Section 3.2 1t 1s shown that when there is
partial information on two or more post-stratifiers, {n} can
play a role in inference, so the distinction matters.

I assume that nonresponse 1s ignorable (Little 1982; Rubin
1976), 1n the sense that respondents within post-stratum #
can be treated as a random subsample of sampled cases 1n
post-stratum /, formally, r;, has a binomial distribution with
mdex n, and response probability ¢,,:

raln ~ bin(ny, ¢;).

A stronger assumption is that the nonresponse rate 1s the
same across post-strata. Then ¢, = ¢ for all 4, and respon-
dents are a random subsample of sampled cases overall. [
call this the mussing completely at random (MCAR) as-
sumption, using Rubin’s (1976) terminology; it apples triv-
1ally with complete response (1.e., when r = n). Under
MCAR, post-stratification 1s not needed for reducing or
eliminating nonresponse bias, but it can reduce vanance. If
data are not MCAR, then post-stratification can reduce bias
from frame errors or nonresponse.
The usual estimator of Y 1s the post-stratified or weighted
mean
14 1 r
fps: 2 P/1}7/1:_2 WiV, (n
h=1 Fo-
where y, is the value of Y for respondent :z, y, 1s the respon-
dent sample mean in post-stratum 4, and w, = rP,/r, if z,
= h; that is, case 1 belongs to stratum /4.
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Little Post-Stratification

2 2 The Randomization Variance of the Post-
Stratified Mean

The appropriate randomization variance for y,, 1s con-
troversial. The unconditional sampling variance 18

var(y,,) = E{var(V,|r)} + var{ E(Vsir)}

= E{var(y,|r)}. 2)

the second term being 0 because E(y,|r) = Y, a constant.
Most sampling texts offer estimates of approximations to (2)
(see, for example, Cochran 1977) But Holt and Smith (1979)
argued that {r} 1s ancillary and (2) yields a poor estimate of
precision when {r} deviates markedly from 1ts expectation

They nstead proposed estimates of the conditional vartance

var(Jps [1) = 2 Pi(1 = £,)Si/ s, (3)

where S7 1s the variance of Y 1n post-stratum 4 and | — f,
= 1 — r,/ Ny 18 a finite population correction. This 1s the
usual expression for variance of the stratified mean. Some
survey statisticians (Kalton and Maligalig 1991, Oh and
Scheuren 1983) have followed this conditional approach The
difference between (2) and (3) 1s of order + ~? and hence not
a major 1ssue given large samples; however, with many post-
strata and estimates for subdomains of the population, the
difference can be nonneghgible.

The basic underlying problem 1s that the randomization
approach 1s ambiguous about whether to condition on an-
cillanes that do not provide direct information about the
quantity of interest but do index precision. Indeed, although
{r}1sintuitively ancillary, I am not aware of a formal theory
of ancillarity 1n the randomization theory of surveys

2.3 Bayesian Inference for Y in the Presence of
Post-Strata

Bayesian inference for Y = 2 P, Y, requires a model for
Y miven Z, yielding predictions of { Y, }: the posterior dis-
tribution of Y 1s summarized by the posterior mean

E(Y |data) = 3, P,E(Y,|data). (4)
h

which 1s analogous to the estimator in randomization infer-
ence and the posterior variance

var(Y|data) = 5, Pivar(Y,|data)

h

+ 5> P,Picov( Y, 1,|data).

h#h

(5)

which plays the role of the estimate of precision. Now con-
sider inference under the basic normal post-stratification
model (BNPM)

(.Vllzl = h, Mirs 0'/21) ~ind G(l‘h; 0'121);
(6)

where y, is the value of ¥ for unit 1, z, identifies post-stratum,
G(a, b) is a normal (Gaussian) distribution with mean «
and vanance b, and p(u,, log o,) is the noninformative Jef-
freys prior for the post-stratum means and variances. The
Gaussian assumption may be inappropriate and profitably

plus, log 6,) = const,
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refined, but 1t 1s of secondary importance; the main features
of (6) are the inclusion of a distinct mean and varnance 1n
each post-stratum and the 11d assumption within post-strata,
which requires modification for designs with clustering and
differential selection rates within post-strata.

A standard Bayesian analysis under (6) yields the postenor
distnibution of Y as a mixture of ¢ distributions with mean
and variance

E(Y|Z,Y,) = Pp,
var(Y|Z,Y,) = vy, = 2 Pi(1 — fi)ousi/ry, (7)
h

where in post-stratum 4, s 1s the sample variance of ¥ and
&, = (ry — 1N/(r, — 3)1s a small-sample correction for es-
fimating the variance; at least four respondents 1n each post-
strata arc required to apply this correction. The data are
denoted ( Z., Y,), where Z represents the sample and census
dataon Zand Y, ={y:1=1,. ., r}.

As noted by Holt and Smith (1979), this model analysis
supports the randomization vanance (3) that conditions on
{rlivar(Y|Z, Y,)mn (7) differs from (3) only in the substi-
tution of sample estimates for the (unknown) population
vanances and 1n the attendant small-sample correction.

2.4 Comparisons With the Unweighted Mean

The post-stratified mean achieves gains 1n efficiency in
large samples, where it has ssmilar properties to the stratified
mean [t 1s unstable, in small samples. and 1s undefined if
any post-strata have no respondents. One view of the problem
1s that the weight wy, = rP,/r, 1s unstable when r, 1s small
and needs trimming or smoothing to control variance.

The most extreme form of smoothing the weights is to
set them all equal to 1, yielding the unweighted mean y
= 1/r 20, v, = 2 p,y,, where p, = r,/r; this corre-
sponds t¢ 1ignoring information in the post-strata. Holt and
Smith (1979) provided numerical comparisons of ¥ and
assuming MCAR and found y,s to be superior unless the
sample size 1s small and the ratio of between-stratum to
within-stiatum variance 1s small.

Questions about whether 1o condition on {r} also arise
when comparing j,s with p. The unconditional sampling
variance of p 1s

var(y) = (1 — [)S?/r, (8)

where S? 1s the population variance of Y and f= r/N. But
1t is not clear whether (3), which treats {r} as fixed, can be
compared with (8), which treats {r} as random. Holt and
Smith (1979) compared (3) with the conditional mean
squared error (MSE) of p,

mse(J |r) = var(y|r) + b2, 9

where var(F|r) = 2, pi(l — [)Si/rnand b = Z, (pa
— P,)Y, 1s the conditional bias of 7. But (9) is a pecubar
measure of precision for the unweighted mean and 1s rarely,
if ever, used 1n practice.

From a modeling perspective, variable weights are a
symptom rather than the cause of the problem of post-
stratification with small samples. The key 1ssue 1s that the
underlying model (6) yields poor predictions of the distri-
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bution of Y in post-strata where r, i1s small; the posterior
mean y, is poorly determined, and the posterior variance
U, requires at least four respondents in each post-stratum
to be defined at all. Hence the inference (7) must be modified
to allow pooling of strength across post-strata. The principled
modeling approach is to compute the posterior mean and
vaniance under a modified model for the distribution of Y
given Z. A less principled approach 1s to model ignoring
some or all of the information in the Z margin. The former
approach is more principled in that it builds a model for all
the relevant data; however, ignoring some information may
be reasonable if it simplifies the modeling process or limits
the effects of model misspecification (Rubin 1984).

Versions of both these approaches yield y as the posterior
mean and hence provide a Bayesian context for the preceding
discussion. The null model that assumes the same distri-
bution of Y across post-strata,

(y1|Zz = h, i, 02) ~ind G(ﬂ> 0,2);
p(u, log o) = const, (10)

yields E(Y|Z, Y,) = §J and var(Y|Z, Y,) = v
= 8(1 — f)s*/r, where s 1s the sample variance of Y and
8 = (r — 1)/(r — 3). Alternatively, 1gnoring the data on Z
we might assume that

(,Vlll-’-s 0'2) ~ind G(/"’» 0'2); (11)

which again yields E(Y|Y,) = 7 and var(Y|Y,) = v. Note
that (10) tmplies (11), but not vice versa. Under MCAR the
distinction between (10) and (11) 1s of no practical import,
because they yield the same inference. When data are not
MCAR, inference under (10) 1s unaffected, but (11) can yield
different answers because it does not assume independence
of Yand Z.

Bayesian analysis under (6) leads to posterior mean y
and variance v,s; Bayesian analysis under (10) or (11) leads
to posterior mean y and variance v. The comparison of pre-
cisions thus is between v, and v, which correspond to the
conditional variance of j,, given {r} and the unconditional
variance of y in the randomization framework. Thus the
Bayesian approach leads to the two natural measures of pre-
cision (v, and v) and also provides small-sample corrections
(8, 8;) for estimating the vanance.

p(u, log ¢) = const,

2.5 Algorithms for Collapsing Post-strata

251 An Algorithm Assuwmung Missing Completely at
Random A useful compromise between using and ignoring
post-stratum counts 1s to collapse small post-strata that con-
tribute excessively to the variance. Frequentist strategies for
collapsing were considered by Tremblay (1986) and by Kal-
ton and Maligalig (1991). This subsection proposes practical
criteria for collapsing under MCAR, aimed at reducing the
expected value of the posterior variance v, associated with
the BNPM (6). The next subsection proposes a modification
when MCAR is not assumed, and hence bias may be an
issue.

Collapsing two post-strata Z = 1 and Z = j is interpreted
as combining the population proportions P, and P, and
modifying (6) by replacing the means and variance in these
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post-strata by a single mean and variance for the combined
post-strata. The posterior mean under this collapsed model
is

le()g) = z thh + (Pl + Pj)f(l+/):
h#1,)
where Y., = (n,y, + r,)/(r, + r;) is the respondent mean
of Y pooled over 1 and ;. The posterior variance can be written

as
v = vy — AV
ps ps iy

_Pra( —f)si | PR = f)S
r r,

Av,

_ (PI + PJ)Zal/(l _ﬁj)slzl
rntr

., (12)

where 6, = (r, + r, — 1)/(r, + 1, = 3), 1, = (r, + 1)V,
+ N,), and s,z, 1s the sample variance after collapsing post-
strata  and ;. If the correction terms (6, and 6,)) for estimating
the variance are 1ignored, then the expected reduction 1n pos-
terior variance is

P - f)o? + P}l — f)o}

E(Av,) =
r, v,

(PP -f)d}
rtr,

, (13)

where o7 and o2 are the expected values of s? and s2. To
express (13) in terms of sample weights, note that if Z and

Y are independent, then ¢ = 67 = 62 = o2, say, and (13)
reduces to
rr
E{Av,jo?) o —A— fw, — w12
‘{ J o } rz(r[ +r) { J}

Hence in this case the vanance 1s always reduced by col-
lapsing, provided that the weights w, and w, in the collapsed
post-strata are unequal. But when Z and Y are associated,
this reduction is counteracted by an increase in variance
o2 from collapsing. (The increase 1n variance is squared bias
from the conditional frequentist perspective of Section 2.2.)

The following collapsing algorithm based on (13) is sug-
gested:

1. Order the post-strata so that neighbors are a priori rel-
atively homogeneous. If they are based on an ordered variable
(such as grouped age), then this step 1s not needed.

2. Collapse the post-stratum pair (7, J) that maximizes
(13), subject to the restriction that ; = 1 + 1, that is, only
neighboring pairs are considered. (This restriction 1s designed
to limit the increase 1n the variance from collapsing, in that
neighboring post-strata are more likely to be homogeneous
with respect to outcomes.)

3. Proceed sequentially until a reasonable number of
pooled post-strata remain, or (13) becomes noticeably neg-
ative.

The main task in operationalizing this algorithm is to
choose forms for updating the variances terms ¢2 and o3,

which depend on the form of association between Z and Y.
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Note that
(14)

where p, = r,/(r, + 1)), r, is the sample size in collapsed
post-stratum : before pooling with 7, and u, 1s the expected
post-stratum mean. Suppose that prior to any collapsing, Z
has K ordered post-strata and Y is linearly related to Z
with correlation p and a constant residual variance ¢°. Ini-
tially, the means of two adjacent post-strata deviate by
4ps /(KV1 — p?), where the standard deviation of Z has been
approximated as K/4. Substituting 1n (14) with ¢2 = 42,
= ¢, the variance after pooling post-strata zand 7 + 1 1s

02[1 + 16p1,1+l(1 ﬁpl,wl)pz/{Kz(l - pz)}]-

Later in the algorithm, let »7, be the number of original post-
strata and let o7 be the expected variance in current post-
stratum ¢. The means of collapsed post-strata 1 and ¢ + 1
under the linear model deviate by approximately 2p(m,
+ m 1 /(KVT — p2), so applying (14) yields

‘712) = puatz + (l - p”)o,ll + [7,,(1 - pu)(ur - U-))zs

2 —
Ol =

0;,I+] = pl,l+lalz + (1 _171.,+1)012+1 + 452(”’1 + ml+l)z

X puH(l _p11+l)62/{K2(l - pz)}-

The value of ¢° does not affect the collapsing algorithm and
can be set to 1. It remains to choose a value of p2. In the
example that follows, p?1s set to the muddle of its range (.5).
but sensitivity to the choice of this parameter is assessed.

(15)

Example I Collapsing Post-Strata in the Los Angeles Ep-
denuologic Catchment Area (LA ECA) survey  The 1979
Los Angeles Epidemiologic Catchment Area (LA ECA) sur-
vey of mental health status was based on an equal probability
sample of households in two catchment areas: East Los An-
geles and West Los Angeles (Eaton and Kessler 1985) Data
were post-stratified to Census population counts by Gender
(M or F), Race (H = Hispanic, N = Not Hispanic), Catch-
ment Area (E or W), and Age. Table 1 displays raw sample
counts and population counts for single year ages 18-99 for
the eight subgroups formed by combinations of Gender,
Race, and Catchment Area. The collapsing algorithm was
applied to the age post-strata, separately for each of the eight
subgroups, using (13)-(15) with K =99 — 18 + | = 82 and
p? = .5 Finite population corrections (I — £}, (1 — /,) are
set to |

Figure 2 plots the expected posterior variance as a function
of the number of post-strata for each of the eight subgroups.
The extreme night point on each plot 1s the expected vanance
after collapsing only post-strata with zero counts This vari-
ance has been rescaled to the value 100, so other points on
the curves represent percentages of that value. As cells are
collapsed via the algorithm, the incremental change in van-
ance (13) is used to update the expected posterior vanance.
Although p? is set to .5 in the collapsing algorithm, three
values of p2—0, .5, and .8—are used when computing the
variance increments, yielding the three curves in the figures.
Values of p? other than .S provide an assessment of how the
collapsing algorithm works when p? is incorrectly specified,
as 15 1mevitable 1f a single collapsing algornithm is applied to
more than one outcome variable.

1005

The effect of collapsing the large numbers of post-strata
on the right side of the graphs 1s to reduce variance for all
three values of p2. When p* = 0, post-stratification stmply
adds variance; hence the posterior variance increases mono-
tonically with the number of post-strata, and is a minimum
at 1; that s, when Z is effectively ignored. On the other hand,
when p? is non-0, the posterior variance curves upward when
the number of post-strata i1s small, reflecting an excessive
degree of collapsing. This effect 1s particularly noticeable
when p° = 8. A sensible strategy is to collapse until the
increase 1n vanance from post-stratifying on Z when p? = 0
1s modest and the upturn 1n the curve from excessive col-
lapsing when p? is non-0 1s avoided. Based on these consid-
erations, a choice of about 8 to 10 post-strata seems reason-
able for the examples in Figure 2.

Figure 3 displays the post-stratum weights for subgroup
FNE, the left panel when collapsing 1s confined to the empty
post-strata, and the right panel after collapsing to the 10
categonies imdicated by the algorithm; the plotted X-values
represent the left ends of the post-stratum intervals. The al-
gorithm reduces the variation in the weights substantially
more than the standard method of truncating the weights at
a fixed value, such as 3. Plots for the other groups are similar
and are omitted.

One mught ask why collapsing 1s based on the expected
reduction in posterior variance. When data are available,
why not stmply compute (12) directly for each variable and
collapse to reduce the actual posterior vanance? Intuitively,
this approach seems too sensitive to sampling fluctuations
in the within-stratum means and variances, particularly when
the number of post-strata 1s large. Also, 1t seems t00 oppor-
tunistic to use the data to determine the model 1n such a
direct way; model selection should be based on prior infor-
mation to the greatest extent possible.

252 Collapsing Strategies When Bias ls Present.
When MCAR does not hold, post-stratification removes the
component of bias ansing from differential selection across
post-strata. If post-strata ; and s are collapsed, the posterior
mean mav be distorted if their response rates ¢, and ¢, differ;
hence the strategy of the previous section needs to be mod-
1fied to avoid collapsing post-strata with significantly differing
response rates. The choice of modification is delicate, because
such strata are prime candidates for collapsing to reduce
variance; that is, there 1s a tension between bias increase and
variance reduction.

To detcrmine bias from collapsing : and 7, note that

E(Py, + Py,|P, + P, ¢, ¢, data)

qojrlfl + ‘plrjfj

~(P, +P)
l / o t e,

Collapsing yields the posterior mean from setting ¢, = ¢, in
this expression. The bias introduced by collapsing 1s thus

(P, +P})(rrj’;1 + rjfl __‘Pjrlfl +Salrj.]7/) )

rtn et er

Taking expectations and replacing ¢, /¢, by the estimate
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Table 1 Los Angeles ECA (A) Sample and (B) Census Counts by Age in Eight Stratum Groups

Journal of the Amernican Stahistical Association, September 1993

Stratum group

1.FNE 2.FNW 3 FHE 4 FHW 5 MNE 6-MNW 7 MHE 8 MHW

AGE (A) (8) (A) (B) (A) (B) (A) (B) {A) (8) (A) (B) (A) (8) (A) (8)
18 3 193 12 721 12 1,433 4 338 2 231 8 729 6 1,517 1 403
19 1 206 6 830 11 1,581 4 402 4 227 12 819 9 1,584 2 430
20 5 197 11 998 17 1,497 2 389 1 254 7 991 15 1,670 1 468
21 5 180 13 1,058 12 1,514 2 401 1 247 13 1,128 18 1,603 5 479
22 2 218 15 1,361 13 1,606 4 372 2 252 12 1,265 22 1,675 1 499
23 2 214 23 1,582 18 1,597 10 416 2 243 23 1,656 15 1,626 5 459
24 5 226 9 1,663 20 1,460 7 394 2 233 16 1,586 18 1,535 7 473
25 3 197 17 1,675 21 1,388 0 398 4 224 30 1,672 16 1,483 6 483
26 1 183 21 1,723 14 1,288 8 368 3 212 27 1,700 13 1,317 7 401
27 2 180 21 1,778 16 1,327 4 373 3 212 33 1,800 14 1,272 5 397
28 4 181 33 1,609 18 1,176 2 313 2 193 35 1,671 17 1,143 2 364
29 6 184 21 1,760 18 1,170 9 360 3 195 43 1,811 19 1,224 4 373
30 4 196 32 1,668 15 1,153 5 312 4 201 20 1,726 12 1,028 2 324
31 4 212 23 1,570 20 1,038 4 277 1 213 22 1,668 15 991 5 325
32 2 178 28 1,611 18 893 7 269 0 203 28 1,548 12 1,005 2 274
33 4 187 31 1,469 14 954 5 316 3 198 23 1,635 12 934 2 285
34 4 147 25 1,135 11 901 3 234 5 166 23 1,286 14 830 4 252
35 1 143 26 1,280 17 817 4 210 2 148 25 1,287 16 874 6 254
36 2 144 22 1,084 12 817 3 232 2 181 21 1,148 11 729 5 263
37 7 143 20 1,059 10 789 4] 216 0 137 15 1,139 18 732 3 185
38 1 127 17 836 12 693 1 178 2 143 12 941 12 676 5 197
39 1 150 20 887 9 709 2 201 2 151 15 870 1" 646 3 202
40 4 161 18 759 10 688 2 178 0 146 14 812 9 633 1 182
11 4 149 16 716 2 673 2 164 1 151 8 760 15 623 2 177
42 2 138 10 691 9 634 6 170 2 157 6 814 11 598 4 220
43 2 137 14 652 9 577 3 157 4 147 12 691 5 522 3 150
14 2 162 7 648 6 655 3 139 2 137 9 731 6 555 1 179
45 1 118 6 644 5 646 3 162 0 143 13 718 5 557 1 144
46 0 145 9 618 5 609 1 153 3 148 12 657 1 490 2 125
47 1 161 8 680 10 597 1 140 0 151 6 718 4 505 1 127
48 2 161 6 625 4 595 3 147 0 140 5 616 9 563 0 133
49 2 199 7 710 5 716 3 151 5 141 5 764 4 553 1 158
50 0 175 10 758 3 731 1 150 4 159 10 768 5 612 1 151
51 1 172 6 763 5 641 1 153 0 150 4 697 4 595 1 141
52 3 213 5 846 3 723 2 122 1 173 5 719 7 574 2 112
53 2 200 8 763 4 684 2 135 2 184 iR 756 6 566 0 118
54 1 229 6 825 6 645 3 145 1 211 10 778 2 572 0 119
55 3 257 18 841 8 649 1 167 6 189 6 777 5 483 1 112
56 2 275 7 829 5 609 0 105 2 188 7 824 7 560 0 92
57 2 220 9 876 7 573 3 153 4 188 4 793 4 515 0 94
58 4 241 5 843 4 550 2 93 2 224 8 814 8 465 1 82
59 2 237 8 763 7 566 1 96 1 213 2 769 6 423 0 70
60 1 243 12 765 2 508 1 95 0 196 9 760 4 416 1 81
61 3 221 10 721 6 442 1 102 3 220 8 657 7 349 2 67
62 4 237 11 736 3 383 1 115 3 189 8 652 7 344 0 66
63 4 240 7 643 8 399 0 72 2 199 8 566 0 255 0 46
64 5 244 9 588 8 387 1 67 2 212 5 647 3 309 0 63
65 2 259 5 704 7 385 0 66 4 194 7 574 3 270 0 45
66 3 269 11 569 6 408 1 70 4 184 8 480 3 232 0 51
67 7 258 6 622 3 396 0 66 1 183 4 456 3 275 0 45
68 5 211 7 507 1 370 0 54 5 200 7 445 6 272 1 42
69 5 190 5 446 7 393 3 56 0 164 4 376 1 200 0 39
70 3 198 7 422 5 323 1 48 0 165 2 342 1 191 0 35
71 2 175 7 400 3 284 0 65 1 158 6 316 0 201 1 30
72 3 21 5 389 6 295 0 58 0 141 5 296 5 221 0 80
73 2 166 3 346 3 294 1 42 1 106 3 246 1 204 0 35
74 3 182 1 313 3 281 0 28 1 105 3 263 1 176 2 28
75 5 160 4 306 1 266 1 35 4 103 5 186 1 170 0 24
76 3 134 0 270 5 255 0 51 4 123 1 227 2 160 0 22
77 2 120 3 276 1 191 0 26 3 85 1 139 3 157 o] 39
78 2 114 7 235 6 179 1 23 3 72 2 136 1 149 0 14
79 4 145 3 328 4 243 0 32 1 76 3 115 3 157 0 20
80 1 102 o] 219 0 138 0 16 1 61 1 102 2 112 0 10
81 3 97 4 203 2 141 0 14 1 46 1 93 0 79 0 5
82 1 91 2 177 7 94 0 17 0 50 1 72 2 59 0 5
83 2 92 0 165 3 100 0 12 1 46 1 64 0 63 Q 11
84 1 73 0 141 1 81 0 15 0 42 1 60 2 55 0 8
(continued)
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Table 1 (continued)
Stratum group
1 FNE 2 FNW 3 FHE 4 FHW 5 MNE 6.MNW 7 MHE 8 MHW
AGE  (A) 8) (A) (8) {A) (8) (A) (8) (A) 8) (A) {8) (A) (8) (A) (B)
85 2 74 1 140 0 66 0 12 1 20 0 44 0 55 0 8
86 0 57 0 112 1 55 1 12 2 33 0 48 0 25 0 4
87 0 55 0 96 1 47 0 5 1 21 0 37 1 34 0 22
88 1 48 0 89 0 34 0 5 0 17 1 32 0 14 0 7
89 1 29 0 74 0 48 4] 10 0 15 1 28 1 20 0 2
90 0 30 0 75 0 29 0] 3 2 12 0 24 0 13 0 5
91 0 30 0 53 0 31 0 5 0 17 0 21 0 9 0 2
92 1 21 0 45 0 24 0 5 0 10 0 11 0 5 0 2
93 0 15 0 32 4] 18 0 1 0 8 0 6 0 10 0 1
94 0 21 0 33 0 10 0 2 0 2 0 7 0 5 0 1
95 0 11 0 23 [ 7 0 2 0 1 0 5 0 3 0 1
96 0 9 0 12 1 8 0 4 0 3 0 4 0 2 0 2
97 0 6 0 8 0 6 0 0 0 0 0 4 0 3 0 1
98 0 2 0 6 0 4 0 0 0 0 0 0 0 5 0 1
a3 0 4 0 3 0 16 0 3 0 4 4] 0 0 12 0 4

NOTE F = Female, M = Male, N = Non-Hispanic, H = Hispanic, E = East Los Angeles, W = West Los Angeles

(r,/P,)/(r,/ P,) 1n this expression yields the following bias:

/R VR P
(r,+r) (P +py)H#

E{Am,} = (P, + P,)(

(16)
The reduction in expected MSE from collapsing 1s thus
E(MSE,) = E(Av,) — E{Am,}?, (17

where E(Av,) 1s given by (13) and E(Am,)? 1s given by the
square of (16). This expression can be shown to be a refine-
ment of Kalton and Maligalig’s (1991) MSE collapsing cri-
terion.

Example 2 (Example I continued) The analysis of Ex-
ample | was repeated with (13) replaced by (17). Plots of
gains against number of collapsed post-strata looked similar
to Figure 2, except that losses for small number of post-strata
were a bit larger, suggesting a final choice with one or two
additional post-strata. Weights for the collapsed post-strata
were slightly more vanable than those 1n Figure 3, reflecting
more resistance to smoothing. The only marked change in
results was for subgroup 2, where the collapsed weight for
post-stratum aged 83-99 was nearly 6, compared to 2 1n the
MCAR analysis. For these data the refinement for non-
MCAR seems unnecessary, but more study of this question
for other data sets seem needed.

2.6 Alternative Strategies to Collapsing

As noted earlier, the basic problem with inference based
on (6) is that the non-informative prior on (g, o) provides
poor predictive inferences in small post-strata. Collapsing
post-strata i and j effectively assumes homogeneity of the
distribution of Y 1n 7 and J, that is, g, = g, and ¢} = ¢?
Model-based alternatives to collapsing can be based on other
modifications of the prior in (6).

If the stratum means can be regarded as exchangeable,
they might be modeled as ud from a common distribution,

o Canvright © 2001__All rights reserved . ..

yielding @ random effects model With normal specifications,
the prior

2 _ 2
op = 0

h;

plu, log 72, log ¢2) = const.

1’(#/,10/;) ™~ ind (;(ﬂa 7'2); for all

(18)

yields estimates of ¥ that smooth y,, toward y (Scott and
Smith 1969; Holt and Smith 1979; Little 1986). If variances
are not assumed constant:

Plunl o) ~una Glu, 72); pu, log 72, log 07) = const.,

the resulting posterior mean shrinks y,, towards a mean
where cases in post-stratum # are weighted by s;2. These
estimators are appealing compromises between probability-
weighting and vanance-weighting. In large samples the pos-
terior means converge to ), and hence are design consistent.
In small samples the shrinkage 1s greatest when the ratio of
between 0 within variance s small, as should be the case.
But simulations {Little 1991a) suggest that the inferential
properties of estimates based on these models can be ad-
versely atfected by lack of exchangeability of the { u, } . Thus
gains 1n efficiency have a cost in additional model assump-
tions. If .Z 1s a grouped continuous or ordered categorical
variable, the exchangeable model does not seem appropriate,
because one might expect the mean of an associated outcome
to vary systematically with Z. In such cases a model that
shrinks towards a regression line might yield better inferences.
A referee notes that in other cases it may be possible to find
groups of post-strata within which exchangeabibty is plau-
sible. Studies comparing these approaches with the collapsing
methods of the previous section may be of interest.

These procedures require a separate model for each Y.
Other methods smooth the weights in each post-stratum di-
rectly. A common practical device is to place an upper limit
on the weight—a value of 3 was used in Hanson (1978)—
and trim higher weights to this value. Potter (1990) considers
procedures for determining a good upper limit, based on
iterative MSE computations. Another approach to smooth-
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FIGURE 3. POST-STRATUM WEIGHTS, SUBGROUP 1 (FNE)
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ing is to model the response rates. Let § be the overall prob-
ability of selection and let 7, = d¢; be the probability of
selection and response in post-stratum /. Then model r,| N,
w5, as binomial with index N, and probability 7, and assume
further that the selection rates n, have a beta distnibu-
tion with mean = and vanance xn(1 — 7); in terms of the
usual parametenization of the beta, » = «/(a + () and «
= 1/(a + B + 1). Then the posterior distribution of =, 1s
beta with mean

™
Nh

where A, = (1 — «x)/(1 — x + «N,), which smooths the ob-
served selection rates toward w. Estimating = by r/N,
smoothed weights from this model have the form

E(m,ldata) = , = N + (1 — N\p)

M:’;, oC W/,/{l - 5\;, -+ X,,w;,},

where A, 1s obtained from A, by replacing « by an estimate.

These approaches to weight trimming or smoothing, even
if based on models for the response rates, are not forms of
predictive modeling. As noted 1n Section 2.2, for predictive
inference models for the nonresponse rate are irrelevant, be-
cause model uncertainty lies in the distribution of Y given
Z. To illustrate the distinction, note that under MCAR, the
correct model for the selection rates set =, = w and hence

o Convriaht © 2001 Al riahts regserved,.. ...

#4 equal to a constant. The resulting estimator of ¥ 1s 7,
which ignores information in the post-strata completely; but
we have seen that this 1s not an efficient estimator if the post-
strata are predictive of the outcome.

3. TWO OR MORE POST-STRATIFIERS

3.1 Introduction

With more than one post-stratifier, the likelihood of sparse
or empty post-strata increases, so the need to modify the
BNPM is greater. Also, the range of possible modifications
is considerably greater Attention is restricted to the case of
two post-stratifiers. Let Z; and Z, be two categorical post-
stratifying variables and let P, be the population proportion
with Z| = h. Zz = k. Then

where Y, is the population mean 1n cell (%, k). Suppose
that a random sample is taken, resulting in # individuals
m cell (A, k), ryy of whom respond to Y. Model-based in-
ference about Y involves two distinct components: inference
about { P,, } based on a model for the joint distribution of
Z, and Z- and inference about { ¥}, } based on a model for
the distnbution of Y given Z, and Z,. A direct extension of
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(6) for Y given Z;, Z, 1s the basic normal two-way post-
stratification model

(,V: lzll = /17 Zy T k’ KAk s 0'721/\) ~1na G (i, G%IA);
(19)

The next section discusses inferences under this model. Sec-
tion 3.3 considers modifications for smali cells.

P(uu, log o) = const.

3.2 Inferences Under the Basic Normal Two-Way

Post-Stratification Model

321 ThePosterior Meanof Y. The BNPM model (19)
with { Py } known yields

E(Y|Z,Y\) = Vps = 22 2 Puim, (20)
h A
the post-stratified mean for the combined post-strata. In some
circumstances { P, } is unknown but the marginal distri-
butions { Py, }, { Pyx} of Z, and Z, are known; then a model
is needed to predict { P, }. Model inference for ¥ then de-
pends on what is known about n = { n } (Little 1991b).
Suppose first that Z, and Z, are recorded for nonrespon-
dents, so n 1s observed. Under random sampling, a natural
model for n 1s

{nm t|n ~ MNOMI{ Py}, nl, 2D

the multinomial distribution with index # and probabilities
{ Py} With the Jeffreys’s prior on { Py, }, the resulting pos-
tenior distribution of { Py, } given { ny } 1s Dirichlet with pa-
rameters {n;,, + 1/2}. The posterior distribution of { P }
given { P, }, {P..},and { ny } does not have a simple form
But its posterior mean can be approximated as

(P50} = Rake[{mu}; {Pi.}, {Ps ],

which denotes the result of raking the sample counts { 7 }
to the known margins. Raking means iterative proportional
fitting (Deming and Stephan 1940) of { ny } to match suc-
cessively the row and column marginal distributions { P. }
and { P..}; (22) approximates the posterior mean of { Py }
because it 1s asymptotically equivalent to the maximum
likelihood (ML) estimate (Brackstone and Rao 1979; Ireland
and Kullback 1968), which is in turn asymptotically equiv-
alent to the posterior mean. Note that (22) involves the sam-
ple counts, n, which do not enter into inferences about ¥y
for the case of a single post-stratifier.

If either Z; or Z, is subject to nonresponse as well as Y,
then the sample counts { ny } are not known. A model is
then required to relate the respondent counts {ry } to the
target population. Suppose that

{ruttr ~ MNOMI[{ Pyeom/®}, rl,

where ¢, is the probability of response 1n cell (4, k) and
@ = 2 2i Puene. This model is undenidentified given the
available data. But Little and Wu (1991) showed that the
estimates based on raking { r,} to the margins, namely

(22)

(23)

{Pil} = Rake[{rw}: { Py, Pi}], (24)
are ML under the assumption that
Cnn = o5 (25)
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that is, the response rate is a product of row and column
effects (see also Binder and Theberge 1988, sec. 3) Little
and Wu showed that the assumptions about the ¢, are un-
testable from the data, and that other choices lead to other
esttmation methods.
Combining these raking estimates with estimates of { Y}
from (19) yields the posterior mean of Y as
H Kk ~
¥=2 2 Puim, (26)
h=1 A=1
where {15;,;\} is given by (22) or (24), depending on the data
at hand.

322 The Posterior Variance of Y. If{Py}1sknown,
then the posterior variance of Y under (19) is

var(Y1Z,Y,) = Up = 2 Pkl = fu)dmSia/ rms  (27)
B

where in post-stratum Ak, fix = Fu/Nue, 2 is the sample
variance of Y, and d, = (rp — 1)/ (rm — 3). I { P} 15
unknown, then the posterior variance can be written as

var(Y/d) = E[v,| d} + var|j,| d]. (28)

where d stands for the data. The first term on the right side
of (28) is approximated by replacing { Py } in (27) by esti-
mates under the model. The second component reflects the
added variance from uncertainty n the { Py } and can be
written as

Var(}—’ps,d) = Z Z Z z ﬁlAfImCOV(PhAs P[m,d)'

oA ! m

(29)

For the raking estimates, the covariance matrix cov (P,
P,.| d) can be approximated by the asymptotic expressions
derived 1in Binder and Theberge (1988). Another approach,
which does not rely on asymptotics, is to simulate the pos-
terior covariance matrix by computing 7" draws {P;,Z.)} (t
=1,..., T) from the posterior distribution of { Py, }, com-
puting post-stratified means y{ by substituting {P,‘,f() } for
{ Py} in P, and then estimating (29) by the sample vanance
of pi overt = 1,..., T. For the model (23) that leads to
raking the respondent counts, the appropriate draws are
computed as

Pi) = Rake[{o }: { Pu.s P.i}], (30)

where {p4)} are drawn from a Dirichlet distribution with
parameters {ry + 1/2}. For the model (21) that leads to
raking the sample counts { n,, }, an approximate procedure
is to apply (24) where {pf,?} are drawn from a Dinchlet
distribution with parameters { 7y + 1/2}. (Unfortunately,
in this case the method does not yield exact draws from the
posterior distribution.) These simulation methods avoid
computing and 1nverting the covanance matnx of { P } and
hence may be useful when this matrix has high dimension,
as in large tables.

3.3 Treatment of Small Cells

In this section I outline modifications of the inferences
under the BNPM for two post-stratifiers. A principled
Bayesian approach 1s to change the flat prior in (19) for Y
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given Z; and Z; to borrow strength across post-strata. Mod-
ifications should depend on context. One approach of interest
1s to model high-order interactions of Y on Z as random
effects. For example, write

Mk = ot oap + Bt v

and replace the prior for { u, } 1n (19) by a prior that 1s flat
for {u, a,, 8} but models the interactions vy, as normal
with mean 0 and variance 2. The result is a mixed ANOVA
model with fixed main effects and random interactions. The
resulting prediction for Y, (ignoring finite population cor-
rections) has the form

Par = Vi + (1 — Un) Piss

where P = o + &, + B, is an additive fit and
= mu62/(nu62 + 57,) is a shrinkage factor, with estimates
&> and &, of the random effects ¢ and ¢j; computed by
ML or the method of moments.

Modifications of the prior in (19) should be tuned to each
outcome, and hence they may be impractical in large surveys
with many vanables. Simpler strategies are based on ignoring
partial information 1n the post-strata. A common strategy is
to rake sample or respondent counts to the margins, effec-
tively ignoring information on the joint distribution of Z,
and Z, when this 1s available; raking the sample counts seems
preferable, because no model 1s implied for the response
probabilities Raking 1s well justified when the means of
outcome variables have an approximately additive struc-
ture, because if Y, = u + «, + 8, then E(Y |data) = o
+ 2, Py.&y + 24 P B mvolves only the marginal distri-
butions of Z, and Z,, so raking does not involve a loss of
information. Another way of seeing this 1s to note that Equa-
tion (29) for the added uncertainty from raking remains valid
with { y } replaced by { . — P }, where { ¥ | are predicted
values from any additive fit. If the additive fit 1s good, then
the added vanance (29) must be small

If interactions are expected, then a better approach may
be to apply collapsing strategies as discussed in Section 2.
Let Z, denote a “primary” stratifier most closely related to
survey outcomes. and let Z, denote a secondary stratifier.
Then the collapsing methods of Section 2 could be applied
to Z, classes separately for each value of Z, (as in Example
1) or to the single classification of Z, and Z- obtained by
laying out the cells 1n serpentine order, with the Z, index
changing fastest.

If the MCAR assumption 1s violated, as in the case of
nonresponse, then collapsing strategies should focus on lim-
iting nonresponse bias. One way of achieving this 1s to regress
response rates on the post-stratifying variables and then form
collapsed post-strata that are homogeneous with respect to
the estimated response rate (Little 1986; Rosenbaum and
Rubin 1983). This strategy seems particularly useful when
the number of post-stratifiers 1s large. For a recent applica-
tion, see Goksel, Judkins, and Mosher (1991)

4. CONCLUSION

The main aims of this article are to lay out the Bayesian
predictive modeling framework for post-stratification, to
provide a Bayesian interpretation of the problem of how to
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assess precision of the post-stratified mean, to suggest some
approaches for the problem of sparse cells, and to provide a
Bayesian perspective on raking. Many important topics are
left untouched Inference about other quantities, such as
population slopes, has not been considered. The survey
practitioner can nightly complain that deviations from simple
random sampling are restricted to nonresponse and coverage
error—models need to be adapted to complex survey designs.
Another topic of real practical interest concerns post-
stratification to margins that are subject to error, as in an
income classification where the census and survey definitions
differ modestly I beheve that the Bayesian approach provides
a framework for addressing this problem, because progress
1s hard without some working model for the pattern of errors.
Another nteresting topic untouched here 1s raking to totals
of an auxihiary vaniable (such as dollar amounts) rather than
to sample counts. The algebra for thus form of raking 1s closely
related to that for raking to sample counts (see, for example,
Binder and Theberge 1988), but the underpinning models
appear quite different Even statisticians unpersuaded by the
modeling view of surveys can benefit from a study of these
underlying models, because they case light on how to choose
between alternative analysis approaches, which in the absence
of models can appear capricious For modelers, 1 suggest
that post-stratification 1n particular, and survey methods in
general, remain rich and somewhat neglected areas with
many problems still to be resolved.

[Receved October 1991 Revised September 1992 ]
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