- Calibration Estimators in Survey Sampling
JEAN-CLAUDE DEVILLE and CARL-ERIK SARNDAL*

This article 1nvestigates estimation of finite population totals in the presence of unmivariate or multivanate auxihary information.
Estimation 1s equivalent to attaching weights to the survey data. We focus attention on the several weighting systems that can be
associated with a given amount of auxihary information and denve a weighting system with the aid of a distance measure and a set
of calibration equations. We briefly mention an application to the case in which the information consists of known marginal counts
1n a two- or multi-way table, known as generalized raking The general regression estimator (GREG ) was concerved with multivanate
auxiliary information in mind Ordinanly, this estimator 1s justified by a regression relationship between the study vanable y and
the auxiliary vector x. But we note that the GREG can be derived by a different route by focusing instead on the weights The
ordinary sampling weights of the kth observation 1s 1/, where m; 1s the inclusion probability of k& We show that the weights
implied by the GREG are as close as possible, according to a given distance measure, to the 1/, while respecting side conditions
called calibration equations. These state that the sample sum of the weighted auxiliary vanable values must equal the known population
total for that auxihary vaniable. That 1s, the cahibrated weights must give perfect estimates when applied to each auxihiary variable
That 1s a consistency check that appeals to many practiioners, because a strong correlation between the auxihary vanables and the
study vanable means that the weights that perform well for the auxihary vanable also should perform well for the study varable
The GREG uses the auxiliary information efficiently, so the estimates are precise; however, the individual weights are not always
without reproach For example, negative weights can occur, and 1n some applications this does not make sense. It 1s natural to seek
the root of the dissatisfaction 1n the underlying distance measure. Consequently, we allow alternative distance measures that satisfy
only a set of minimal requirements Each distance measure leads, via the calibration equations, to a specific weighting system and
thereby to a new estimator These estimators form a famuly of calibration estimators We show that the GREG 1s a first approximation
to all other members of the famuly, all are asymptotically equivalent to the GREG, and the vanance esiimator already known for
the GREG 1s recommended for use 1n any other member of the family Numencal features of the weights and ease of computation
become more than anything else the bases for choosing between the estimators The reasoning 1s appled to calibration on known
marginals of a two-way frequency table Our family of distance measures leads in this case to a fammly of generalized raking procedures,

of which classical raking ratio 1s one.
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Survey statisticians use auxiliary information in many
ways to improve survey estimates. For example, using the
general regression estimator for a finite population total or
mean requires a vector of auxiliary variables for which the
population total is known. The calibration estimators derived
1n this article are a family of estimators appealing a common
base of auxiliary information. A calibration estimator uses
calibrated weights, which are as close as possible, according
to a given distance measure, to the original sampling design
weights 7! while also respecting a set of constraints, the
calibration equations. For every distance measure there is a
corresponding set of calibrated weights and a calibration es-
timator. In Section 2 we define a family of distance measures
and derive the corresponding family of calibration estimators,
then establish their properties 1n a series of results. Varance
estimators for calibration estimators are given 1n Section 3.
An important application of these ideas, mentioned in Sec-
tion 4, 1s the calibration on known marginal counts in two-
way or multiway tables, which leads to generalized raking.

1. DERIVING THE GENERAL REGRESSION
ESTIMATOR BY CALIBRATION

Consider a finite population U = {1, ..., k, ..., N},
from which a probability sample s (s < U) is drawn with a
given sampling design, p(-). That is, p(s) is the probability
that s is selected. The inclusion probabilities 7, = Pr(k € s)
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and my = Pr(k & [ € 5) are assumed to be strictly positive.
Let y, be the value of the vanable of interest, y, for the kth
population element, with whach also is associated an auxiliary
vector value, x¢ = (Xg(, ..., Xy, . - ., Xis)'. For the elements
k € s, we observe (yi, xi). The population total of x, t,
= 21, Xy, is assumed to be accurately known. This knowledge
may come from one or more sources, such as census data,
administrative data files, and others. If 4 (4 = U) 1s any set
of population elements, X , is our shorthand for ¢, (e.g.,
2 Vi means Zies Vi)-

The objective is to estimate the population total ¢,
= 2 v yx. Extending an idea of Lemel (1976), Deville (1988)
used calibration on known population x-totals to modify the
basic sampling design weights, d;, = 1/, that appear 1n the
Horvitz-Thompson estimator, Ey,, =2V me= 2odiyi A
new estimator, Eyw = 25 WiVi, 18 sought, with weights wy, as
close as possible, in an average sense for a given metric, to
the d; while respecting the calibration equation

(1.1)

Z WiXe = tx-

3

Here, w;, would be a more appropriate notation for the sam-
ple dependent weights, but for brevity we write just w,. The
idea of adjusting the sample weights d; is discussed in the
context of the U.S. Consumer Expenditure Survey by Zie-
schang (1986, 1990), who considered “weighting control
procedures” through a generalized least squares weighting
algorithm. The work of Bankier (1990) is also related. If
E,(-) denotes expectation with respect to the sampling design
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p(s), a measure of average distance reminiscent of the chi-
square statistic is E,{ 2, (wy — di)*/dy } . For more generality
in this expression, we can let the kth term have an individual,
known positive weight 1/g;, unrelated to d,, which gives
the average distance

Ep{E (we — di)?*/drar | (1.2)

The uniform weighting 1/g, = 1 is likely to dominate in
applications, but unequal weights 1 /¢, are sometimes moti-
vated; see Example 1, which follows. Our objective is to de-
rive new weights that modify as little as possible the original
sampling weights d, = 7', which have the desirable property
of yielding unbiased estimates; the survey statistician wants
to stay close to these weights. We thus seek the minimum
of (1.2) subject to (1.1) holding for every sample s. This 1s
equivalent to minimizing, for any particular s, the quantity
Zo(wy — di)? ) degy = 2, di(wi/di — 1)/ gy, subject to the
single constraint ( 1.1). In other words, we should minimize
the conditional value of the distance, given the realized sam-
ple 5. Nothing says that the new weights will continue to
give unbiased estimates, but a realistic expectation is to re-
main near unbiasedness. Minimization leads to the calibrated
weight

wi = di(1 + qixi\), (13)

where the vector of Lagrange multipliers A is determined

from (1.1), that 1s,
A=T, (b~ ), (1.4)

assuming that the inverse of

T, = 2 deGeXuXk- (1.5)
exists. The resulting estimator of 4, is
i:Vl‘(:g = z WiVi = 2y1r + (tx - E\w)lﬁss (16)

s

where t., = 3, dix; denotes the Horvitz-Thompson esti-
mator for the x-vector and

B, =T,' X diagixiye (1.7)

is a weighted estimator of the multiple regression coefficient.
Thus, Deville’s (1988) calibration technique achieves two
things: (1) 1t provides an alternative derivation of the gen-
eralized regression estimator ( Cassel, Sarndal, and Wretman
1976; Gourieroux 1981; Sirndal 1980: Isaki and Fuller 1982,
Wright 1983) and (2) 1t emphasizes that 1t is fruitful to view
(1.6) as a linear weighting of the observations y, with weights
w; that are sample-dependent and given by (1.3). This view
1s also held by Sédrndal (1982), who used the w; to create a
suitable variance estimator for Emg (see Section 4), and also
by Bethlehem and Keller (1987) and Lemaitre and Dufour
(1987). The research question addressed in this article is
whether useful alternative estimators will result by allowing
other distance measures.
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Example 1. Derivation of the ratio estimator. Take x;
= Xy, a positive scalar. Then xj A = xA. Let us take g, = 1/
Xg. We obtain X = (Zp x)/(Zs dexi) — 1 = L/t — 1,
whereby wy, = di(1 + @A) = di (1 + X) = dit./ e, and
from (1.6) £)eq = txfy,, /1., the well-known ratio esttmator.
Note that the unequal weighting g, = 1/x; 1s essential for
obtaining this result.

2. A CLASS OF DISTANCE MEASURES

In (1.2), the distance between the original weight d, and
the new weight w, was rather arbitrarily taken as (w, — d;)?/
diq,. 11 is natural to consider alternative distance measures.
These measures should share a few basic features that are
easy to accept. For element k, we consider a distance G (w,
d) such that (1) for every fixed d > 0, G,(w, d) is nonneg-
ative, differentiable with respect to w, strictly convex, defined
on an interval D(d) containing ¢, and such that G,(d, d)
= (; and (2) g«(w, d) = dG(w, d)/dw is continuous and
maps I (d) onto an interval Im,(d) 1n a one-to-one fashion.
It follows that g, (w, d) 18 a strictly increasing function of w
and gild, d) = 0. Average distance is then measured by
E,{ > Gi(wy, di)}. To minimize this quantity subject to
(1.1) holding for all s is equivalent to seeking the w, that
munimize, for any particular s, the sum 2, G (wy, di) under
the single constraint (1.1). If A denotes a vector of Lagrange
multipliers, derivation gives

(Wi, di) — XA = 0. (2.1)

If a solution exists, our assumptions guarantee that it is
unique It can always be written as

Wi = diFi(XiN), (2.2)

where d,Fi(-) is the reciprocal mapping of g.(+, d;) that
maps Im,(d,) onto D;(dy) in an increasing fashion. From
our assumptions, F,(0) = 1 and F(0) > 0. The important
quantty 5 (0) plays the same role as gy in (1.2}, so we use
the notation £(0) = g.

In most of our applications, gi(w, d) = g(w/d)/ qi, where
g(+)1s a function of the single argument w/d, independent
of k, continuous, strictly increasing, and such that g(1) =0
and g'(1) = 1. Examples are found in Table 1. Then g,(w,
d) depends on k only through the multiplicative factor 1/
g.. If F(u) = g~ '(u) denotes the inverse function of g(-),

(2.2) becomes
Wi = dkF(qu'k)\). (223)

From (1.1), the calibration equations necessary to determine

A=(A, ... A, .. LAy are
te = 2 wiXe = 2 diFr(XiN) X (2.3)
It is convenient to define
¢, (N) = 2 di{ Fi(xiA) — 1} xy, (2.4)
whereby (2.3) can be written as
d’\(k) = tx - i)ﬁv (25)
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Table 1 Examples of Distance Functions G.(w,, d,) With the Associated g,(w,, di) and F,(u)

Case GxGr(Wi, dy) gWi/dy) = QuQu{Wi, di) Fe(u) = F(q.u)
1 (wi ~ di)¥/2d wi/d, — 1 1+ quu
2 wlog(w,/d\) — wy + dy log(w,/d\) exp(qxu)
3 2(Vwi — Va, 2{1 ~ (wifdi) "} (1 - quuf2y
4 —dilog(w,/dy) + wy, — di 1 — (wifdy)™ (1 - quw)™’
5 Wi — /2w, {1 = (w/dy)?}/2 (1 - 2qu)—”

NOTE  The functions are normahzed so that F(0) = g, In alt cases

The right side is a known quantity for every sample s. To
summarize, the steps of the procedure are:

1. Given the data for the realized sample s and for the
chosen F,(+), solve (2.5) for A. Iteration may be required.

2. Once A is determined obtain the resulting calibration
estimator of 1, as

Lw = 2 Wbk = 2 diFi(XiN) Y. (2.6)

This estimator will give close estimates of = 2, y if there
is a strong relationship between y and x. To see this, suppose
that y, = X« for all k and some constant vector «; that is,
y is perfectly explained by x. Then, from (2.3), t,,, = ¢, for
every sample, so the variance is nil.

The statistician chooses the distance function G (wy, di).
Or, equivalently, the umiquely corresponding function Fi(u)
= Fi(x}\). Examples of the form gi(w, d) = g(w/d)/ax
are shown in Table 1, where the functions are normalized
to obtain Fi(0) = 1 and F}(0) = gx. Because 1/qgx is a
recurring multiplicative factor, the table shows q, G, (wy, di)
and g, 8w, di) = g(wi/ di).

The cases 1n Table 1 correspond to well-known distance
measures; for example, Hellinger distance in Case 3, and
minimum entropy distance in Case 4. In Cases 1, 3, 4, and
3, Fr(u) is of the form {1 + ageu)'/*, with o = 1, —1/2,
—1, —2, respectively; Case 2 is obtained when o — 0. What
are the relative merits of these cases? The existence of a so-
lution of (2.5) is one aspect that needs to be considered.
Cases 1 and 2 always lead to a solution; in Cases 3, 4, and
5, a solution is not guaranteed, but Result 1 on page 379
shows that the probability of a solution tends to 1. More
important perhaps is the range of values that the weights wy
= di. F(q,x%\) can take. In Case 1, which yields the regression
estimator ( 1.6), the weights can be positive or negative; Cases
2, 3, 4, and 5 guarantee positive weights. In each case, some
unrealistic or extreme weights w;, may occur for rare or ““‘un-
lucky” samples. That Case 1 can yield negative weights w,
may be unacceptable to some users. Case 2 may yield some
weights w, that are extremely large compared to the basic
sampling weights d, = n;'; again, the user may find this
unacceptable. One may want to avoid a function F, () that
can give overly extreme weights, because applying, these
weights to make estimates for various subpopulations (do-
mains) may produce unrealistic estimates for some domains.
We therefore consider a few additional functions that have
the attractive property of yielding weights restricted to an
interval that the statistician can specify in advance. Extreme

weights can be eliminated, but the resuiting estimators retain
their favorable properties.

Case 6. 1In Case 2, the values of Fi (1) = exp(qiu) range
in (0, o0 ). To restrict the weights, and in particular to avoid
extremely large weights, specify two constants L and U such
that L<1<U,setA= (U~ L)/ {(1l —L)YU~-— 1)}, and
define

LU~ 1)+ U(l — LYexp(Aqxu)
(U— 1)+ (1 — Lyexp(Agyu)

We then have Fi(—w) = L; Fi(w) = U; Fi(0) = 1,
F.(0) = gq. It follows that the weights w, = d, F(q,x}\) are
restricted by Ld, < wy, < Ud,. It is worth noting that the
distance function G (wy, d,) for this case 1s, apart from a
multiplicative constant,

F(u) =

X = - X
— L)l +(U~
(x = L)log T— + (U~ x)log [, »

with x = w,/d,. If L is large negative and U is large positive,
we are close to Case 1. If L = 0 and U is large, we are close
to Case 2.

Case 7. With the following modification, we can avoid
the negative weights and that can arise in Case 1: Specify
the constants L and Usuch that L < 1 < Uand define Fj, (1)
=l+quif(L—1)/ge=u<(U—-1)/qF(u)=L1fu
<(L - 1)/q;and Fi(u) = Uifu> (U — 1)/gx. The weights
w,, will then be restricted according to Ld, < w, < Ud,. The
corresponding distance function is as in Case 1, if Ld, < w,
< Udy, and 1s defined as infinity otherwise. If we choose that
L will be positive, negative weights can never occur

Example 2 Returning to Example 1, we note that the
ratio estimator is obtained for any g, (w, d) of the form g(w/
d)/ qi> if g = 1/x;. Then Fi(x}A) = F(grxd) = F(X), a
constant. From (2.3), F(A) = 1,/1,,, so (2.6) gives the ratio
estimator f,, = lilyr/lir-

Example 2 1s exceptional 1n that the choice of function
has no bearing on the estimator. In general, different F,(u)
yield different estimators. However, one can expect these
estimators to produce only slightly different estimates in me-
dium to large samples. The theoretical backing for this claim
is the important Result 5 (p. 379) stating that all estimators
(2.6), under mild conditions on the underlying F,(u), are
asymptotically equivalent to the regression estimator (1.6)
generated by the linear function F,(u) = 1 + g, u. Thus, for
medium to large samples, the choice of F;(u) has only a
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modest impact on such essential properties as the variance
of the estimator. In a small Monte Carlo study with simple
random sampling without replacement of n = 200 from a
population of N = 2,000, we found practically no difference
in variance among the estimators generated by several of the
functions that we have described. Computational conve-
nience more than anything else may then dictate the choice
of Fi(u). We now derive several asymptotic results that are
needed later. Our setup for asymptotics is essentially that of
Fuller and Isak: (1981) and Isaki and Fuller {1982). This
setup has the following important features: We consider a
sequence of finite populations and sampling designs indexed
by s, where n is the sample size (for a fixed-sized sampling
design) or the expected sample size (for a random-sized
sampling design). The finite population size, N, tends to
infinity with n, and we assume that for any vector valued
variable x of interest to this article

I. lim N7, exsts.

2. N'Y(t,, — t,) = 0 in design probability.

3. n'2N"'(t,, — t,) converges in distribution to the mul-
tinormal N(0. A).

Here (3) is to justify the use of the normal approximation
in confidence intervals based on f,,,. From a practical stand-
pomt the assumptions mean that: (a) the components of
t., — t, are considered small and quantities on the order of
Htm — t, || 2 are considered negligible and (b) t,, — t, follows
an approximately normal distribution with covariance matrix
n'N2A. Let £ Y, be shorthand for 23, Z&,; set Ay
= 7y — mem. Now (1), (2), and (3) imply that

AN S S Au(xe/ m)(x)/ ) = AN 2V (1)
.

converges to the fixed matrix A and that N7'(t,, — t,)
= 0,(n'/?). We can view A as a matrix that describes an
asymptotic effect of the sampling design used for the survey.

Before proving any asymptotic properties of Eyw, we discuss
the existence of a solution of (2.5). Now, (2.4) defines a
function of A on C = Niey { A xXiN € Imy(dy) }. a convex
domain. We assume that C is an open neighborhood of 0,
for every n. Five results are now stated and proved; the proofs
of Results 1, 2, and 3 are given in the Appendix.

Result I  Equation (2.5) has a unique solution belonging
to C, with probability tending to one as n = 0.

Result 2 Let X, be the solution of (2.5), if one exists;
otherwise, let A, be an arbitrary fixed value. Then, A, tends
to 0 in design probability, and A, = O,(n '/?).

To obtain Results 3, 4, and 35, we add the assumptions (a)
max|x,| = M < oo, where max is over n as well as over k,
and (b) max F,(0) = M’ < oo. The assumption (b)1s venfied
for Cases 1-7.

Result 3 Wehave A, = T;'(t, — t.,) + O,(n" ).

Result 4 The calibration estimator 7, given by (2.6) is
design-consistent, and N~!(f,,, — £,,) = O,(n"'7?).

Proof Because Fi.(0) = g,, we have, using the assump-
tion (b),

379
F(u) =1+ quu + 0;(u). (2.7)
If (2.5) has a solution, A, then %, — &, = 2, diyx

XA qixhhs + 0(x1N,) } . Now, using condition 3 for the vari-
able y«0:(xiA;), and given the fact that maxe f8,(u)
= O(u?). we obtain N"If_vw — 1.l = N—l{(z, d i
X ydIsDINI ) + Oy(n™), where N™'(Z, dige
X | vellixell} = 0,(1), and As = O,(n7'?) by Result 2.
Result 4 follows, because 1, is desngn-conmstent and N!
(1 = 1) = Op(n™'1?).

Remark. Because {,,, is the nearest estimator to Z,, in a
given sense, 1t can be expected to inherit some of the prop-
erties of t . Design unbiasedness is a property of 2y,,, S0 we
may expe ct to find that ,,, 1s at least asymptotically design-
unbiased (ADU). This property can in fact be obtained, 1f
attention 18 paid to one detail* It is not certain that (2.5) has
a solution. With a small probability, there is none, and Eyw
is undefined. We therefore modify the estimator as follows:
Use 1, if (2.5) has a solution; if it does not, use ,, (that is,
set A, == 0). This gives an ADU estimator. Note, for example,
that the regression estimator (1.6) 1s undefined 1f T, is sin-
gular. The usual poststratification estimator, a special case
of (1.6), is undefined if there is at least one zero poststratum
count.

Result 5. For any F,(+) obeying our conditions, 1, given
by (2.6) 1s asymptotically equivalent to the regression esti-
mator /.., given by (1.6), in the sense that N~ ‘(tyM
- tmg) = 0,(n"'). As a consequence, the two estimators
share the same asymptotic variance.

Proof From (2.6) and (2.7),
Nilivw = Nﬁl;y;r + N‘l(t,\’ - E)mr)”]-‘s~1 Z dekaYk

+ 0)(n™") + N 7' 2 diyibi(Xicks).

The first two terms of the right side equal N~ iy,eg, where
z, reg 18 given by (1.6). The last term was found in the proof
of Result 4 to be O,(n""). Therefore, n'/?N~!(1,,, —
= 0,(n""'?), with a zero asymptotic variance.

3. VARIANCE AND VARIANCE ESTIMATION

Result 5 states that ¢, is asymptotically equivalent to
L.reg, which is the special case of Eyw generated by Fi(u) = 1
+ g,u. For any F,(u) satisfying our conditions, the asymp-
totic variance (AV) of f,w is thus the same as that of the
regression estimator, namely

AV(1,,) = 2 2 Ml de ED(AE)),
=

yreg)

(3.1)

where Ay = my — memyand E, = y, — x; B, with B satisfying
the normal equation

(Z (kakx'k)B = 2 GXiVk- (3.2)
U v

Clearly, B minimizes the weighted least squares expression

Z (v — xiB)? = 2 qiE}. (3.3)

U
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To estimate (3.1), the residuals £, cannot be used, because
B is unknown. An estimator, B,,;, is obtained by noting that
SSy given by (3.3) is the unknown population total of the
fixed quantities g, E%. The calibrated weights estimator of
this total is SS,» = 2, WidiEZ, which is minimized by the
vector B, satisfying the sample-based normal equation
(2, wegiXeXi)Bos = 2 Wik Xa V. Sample-based residuals
now can be calculated as ¢, = y, — xiB,,. The variance
estimator that we advocate is given by

Vitpe) = 20 2 (Al m)(wie) (wiey). (3.4)

The calibration weights w; are used in (3.4) to weight the
residuals e;,. From a strictly design-based point of view, one
can simply weight the ¢, by the standard design weights d;
and obtain a design-consistent variance estimator. When
model-based as well as design-based properties are consid-
ered, however, there is reason to prefer the w, over the d,.
The model, £, that underlies the regression estimator (1.6)
states that E( i) = 8%k, V{( yx) = o7. Now (3.4) not only
1s a design-consistent variance estimator but also is nearly
model-unbiased for the model mean squared error, Ef(iyw
— )2, as Siarndal, Swensson, and Wretman (1989) show in
the case where ¢7 is of the form a'x,, for a constant vector
a. Under simple random sampling without replacement, the
model bias of (3.4) 1s negligible if the sampling fraction is
small.

Example 3 Let us return to Z,,, = t,l,,/1,, in Example

2. Under SRS, (3.4) yields

V(lyw) - (-);U) -

§

where e, = yx — B,x, with B,=(Z, yu)/(Zs x¢). This is an
often-recommended variance estimator for the ratio esti-
mator.

To calculate the calibration estimator (2.6), we must first
solve (2.5) for A. A note on the computational aspects 1s in
order. We suggest an algorithm based on Newton’s method;
in the examples where we tried it, convergence was quick.
Let ¢4(N) = d¢,(N\)/IN. Start with Ay = 0. Subsequent it-
erative values, \,, » = 1, 2, - - « are obtained by

M= A+ {050}t~ t —du(N) ). (3.5)

From (2.4), ¢,(0) = 0; ¢,(0) = T,. The first iteration gives
A = T;Y(t, — t,,); subsequent iterations, » = 2, 3, ...,
obey (3.5) until convergence. Now XA, is the vector (1.4) that
yields the regression estimator (1.6). Thus, (1.6) is a first
approximation to (2.6 ); Result 5 showed them to be asymp-
totically equivalent. Put somewhat differently, the first ad-
justment of A is essential, but the remaining adjustments
are relatively unimportant. If F(u) = 1 + u is the chosen
function, the iteration stops after the first step. (Note: For
cases where F~! maps C onto an interval 7 of R, one must
check that x)\,,, really belongs to I. For instance, if
X; A+ = sup I, 1t is a good idea to replace A,,; by A8, = A,
+ 8,(N,.; — A,) for some 8§, < 1 such that A%, 1s near the
border of the set of permissible values.) A SAS computer
program by Sautory (1991), based on (3.5), is now routinely
used in certain large surveys at the French national statistics
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bureau (IN.S.E.E) to produce estimates calibrated on
known marginals.

4. CALIBRATION ON KNOWN COUNTS IN
FREQUENCY TABLES

An important application of the technique in this article
occurs in connection with calibration on the known counts
(cell counts or marginal counts) of a frequency table 1n any
number of dimensions. Here we limit ourselves to a brief
discussion of two-way tables. We assume distance measures
of the form g,(w, d) = g(w/d) and g, = 1 for all k. This
implies that Fy(u) = F(u) = g~ '(u). With r rows and ¢
columns, the population elements are classified into 7 X ¢
cells—for example, individuals classified into age group by
socioprofessional category. Suppose the typical population
cell, U, contains N, elements: 1 = 1,...,r; J = 1 . O
sothat N= 3> %, N, where 2 2, , means 2, 2/ . We
can distinguish (a) calibration on known cell counts N,
which may be called “complete poststratification” and (b)
calibration on known marginal counts, which may be called
“incomplete poststratification.” In case (a), the calibration
estimator (2.6) equals the well-known poststratification es-
timator with the r X c cells as poststrata; this holds for any
distance measure such that g, (w, d) = g(w/d). Case (b) 1s
more Interesting, because here the theory of calibration es-
timators leads to a new class of estimators corresponding to
the class of distance measures discussed in Section 2. These
estimators can be described as generalized raking procedures,
the classical raking ratio 1s a simple special case. Case (b)
has at least two important practical applications. First, the
marginal counts are known, but the cell counts N, are not.
The marginal counts may stem from different sources; for
example, age group counts from one data file and professional
group counts from another, with cross-classification counts
lacking. By necessity, calibration is then on the known mar-
ginals. Second, there are some zero or extremely small sample
cell counts. Calibration on the cell counts, although perhaps
feasible, is abandoned in favor of the more reliable calibration
obtained from the known marginals. ( The need to calibrate
on marginal counts rather than on cell counts would be even
more strongly felt for a table with three or more dimensions )

To calibrate on the marginals, first identify the x,-vector
having the property such that > ;; x, summarizes (and does
not go beyond) the population totals used in the calibra-
tion—in this case, the marginal counts. It is easy to see that
Xe = (O oo oy O ks 0uttey - ovy 0.0), Where 8, = 1 if the
element k is in row ¢ and O otherwise, and 6., = 1 if k1sin

column j and O otherwise. Then, 2y xx = (N4, ..., Npy,
Ny, ... Ny),where N, = 25 N,, N, = 2. N,. Letting
A=(U1s-..,U,Vp,..., V), wehave X;A = u, + v, whenever

k belongs to cell y. That is, F(xx\) = F(u, + v,) depends
on the cell but not on the label within the cell. With N,

= ZSU 1 /7, the calibration equations (2.3) take the form
EC: N, F(u,+v) = (t=1,...,r) (4.1)
and
é N,F(u, +v)=N., (J=1,...,0). (42)
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This system is to be solved for u,, ..., u,, v,,..., 0, using
the function F(-) chosen by the statistician. [terative solution
is often required. One of the » + ¢ equations 1s redundant,
so it i1s possible to fix one component—say, v, = 0—and
solve the system for: =1, ..., r; y=1,...,c — 1. Note
that %, + v, remains invanant to the elimination of one
equation. Having obtained the u, and v,, we calculate the
cgll factogs F(u, + v)), the calibrated cell count estimates
N = N,F(u, + v)), and the calibrated weights w,
= d, N}/ N,. Finally, the calibration estimator, obtained
from (2.6), is

2yM =2 Wy = 2

$

ZNIP (4.3)
3]

where % = (X, dcyi)/N, The cell count estimates N} are
often substantial improvements on the naive estimates N,.
In fact, the estimator (4.3) can be nearly as efficient as
2 2,, N, 7, the poststratified estimator formed when the
N, are known. If the effects on y of the rows and the columns
are additive (i.¢., the interaction effects are neghgible), then
(43)and 2 %, N, p,, have virtually identical variances.
Efficiency, varance estimation, computational aspects, the
occurrence of extreme weights. and the use of special func-
tions F(+) to restrict the range of the weights (as in Cases 6
and 7) are aspects of generalized raking that we discuss 1n a
forthcoming paper. The theory discussed in Section 2 permits
a wide choice of functions F(-). Some simple specifications
of F(-) correspond to well-known procedures: First, the lin-
ear function F(u) = 1 + u yields additive cell factors, F(u,
+v,) = 1 + u, + v, and the weights are vy = & (1 + u, + v))
for the elements & 1n cell ;7. These weights are not necessarily
positive. The calibration equations (4.1) and (4.2) that result
from this case were presented in Deming and Stephan
(1940). Second, the exponential case F(u) = exp(u) gives
multiplicative cell factors F(u, + v,) = exp(u,)exp(v,), and
the always-positive weights are w, = d; exp(u, + v,) The
solution to (4.1) and (4.2) in this case can be obtained by
carrying out (until convergence) the classical raking ratio
algorithm of Deming and Stephan ( 1940, sometimes called
iteratve proportional fitting In practice, the procedure 1s
sometimes stopped after two 1terations. As pointed out n
Huang (1976), Deming and Stephan suggested the algorithm
apparently thinking that it converges to the solution for the
linear case, for which they had presented the equations. This
was later noted by Deming (1943).

APPENDIX: PROOFS OF RESULTS 1, 2, AND 3

1. Mathematical Preliminaries
11 The Funchtion ¢ and Its Properties

Let C,, = N {N: xiA € Imy(dy)}, where M 1s over k € U, the
finite population associated with the (expected ) sample size n The
interior CY of C, 1s an open convex set contamning 0 for every 7
Moreover, C* = N%,; C%18 convex; we assume 1t 1s also open. Let
E, and P, denote expectation and probability, with respect to the
sampling design indexed by n. For A€ C*, N 'E, {¢,(N) } 1sa well
defined continuously differentiable function By our assumiption 3
apphed to the vanable Fi(x}A). 1t converges to a fixed function
denoted ¢ Convergence 1s uniform on every compact set in C*
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Note the properties N7'¢.(0) = 0, ¢(0) = 0, and N '¢’(0)
=N'T;¢0)=T=1lim N Xy x.xk. Now for every A, ¢' is a
positive definite matrix, because all F; are increasing functions.
Consequently, ¢ 1s 1njective and maps C* onto an open neighbor-
hood of 0 mm R’. Let B be a closed sphere with radius r contained
in that neighborhood, and let A be the compact set ¢ !(B). The
inverse function ¢! 1s defined on B, contiuous, and continuously
differentiable. Then ||¢™'(x)|| 15 continuously differentiable and
bounded on B. Let K = max,ll (¢ 1) (x)].

1.2 Properties of N "¢, ()

We need a result that justifies the use of an inverse mapping of
¢;. Such a result 1s obtained 1n this section. All functions
N '¢'(\) are defined on C* and therefore on A. For a continuous
¥ defined on C*, let ¥y = supreml¥(N) || for M compact in C*.
By our general properties of convergence, we have for every ¢ > 0
that P, (|| N"'¢, — ¢||4 < ¢) = 1 when n increases. Now let ¢,
= N7 '¢, for some funcuion verifying ¢, — @)« < 8r; o) — @'l 4
< BK,with 0 < 8 < 1 The probability of this event tends to 1 as
nncreases Let r, = (1 — B)r, and let B, be the sphere ||x|| < r,
in R’ Now ¢, maps the frontier of A4 onto the crown r; < |x||
=< r(t -~ (), and ¢,(A4) 1s a bordered manifold homotopic to B.
These notions are discussed in Trenoguine (1987). Consequently,
¢1(A) covers the sphere B,—in other words, for every x € By, the
equation ¢,(A) = x has a (unique) solution. Moreover, ¢;', de-
fined on B, 15 a continuously differentiable function. Because
l¢) — &'l < BK for every A in C, (¢7')(x) exists for every x
€ B, and |¢, (x)| = [Ix| K1 —8)"".

2 Proofs of the Three Resulis

Result I Fust, N™'(t,, — t,) = z belongs to B, with a probability
tending to 1. Second, N !¢, has an inverse function on B, with a
probability tending to 1. As (2.5) can be wntten N!(t, — ter)
= N '¢.(\), the equation has a unique solution with probability
tending to 1.

Result 2 Let A, = (N '¢) '(z) if z belongs to B,; other-
wise, A, 1s arbitranly defined. Since ¢,(0) = 0, we have A, — 0
=(N"¢)) "(z) — (N"'¢)"(0) and |A;]} < [zl K(1 — B)7"
This nequality holds with probability tending to 1 when » n-
creases. But z = OP(n’”z), 50 there exists a constant K’ such
that P,(|lzll = K'n "?) = 1 Combining the two mequahties,
PN = KK'(1 - 8) 'n''?) = 1, which implies by definition
that A, = O,(n"'?)

Resuli 3 Let0,(u) = Fr(u) — 1 — gyu. We assume that 6, (u)
= O(u?\ holds uniformly, which 1s equivalent to our assumption
that F%(0) s uniformly bounded. Thus 8(#) = max 8,(u) = O(u?).
Otherwise, for any ¢ > 0, there exists K” such that, for all k, |u]
< ¢ will imply that 6,(u) < K"u> We can write (2.5) as t, — tor
= 3, dii L @eXi + B(xiA) ), and therefore A, — T, ' (t, — to)
= =T ' T, dexe B (x)A,). For X\, sufficiently small,

1A = Tt =t | < [(NT'T)7 K"{N" 2 dicllxi "3}")‘5”2

Here, [(V 'T,) '} = O,(1), and, using assumption (2) in Section
2, N ' Z, dilxl? = 0,(1) Moreover, by Result 2, A2
= 0,(n"") Result 3 follows

[Recetved November 1989 Revised July 1991 ]
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